不久前,工信部、發改委和科技部等三部委日前發布《關于加快石墨烯產業創新發展的若干意見》,欲在2020年形成完善的石墨烯產業體系,實現石墨烯材料標準化、系列化和低成本化,在多領域實現規模化應用。為何三部委對石墨烯產業如此重視呢?
石墨烯是由碳原子組成的單層石墨——最早的石墨烯就是用膠帶一層一層地把石墨變薄而獲得的,是只有一個碳原子厚度的六角型呈蜂巢晶格的平面薄膜。具有非常好的導熱性、電導性、透光性,而且具有高強度、超輕薄、超大比表面積等特性,因而被譽為“超級材料”。
(石墨烯非常輕)
石墨烯的用途非常廣泛,可以被應用于鋰離子電池電極材料、薄膜晶體管、傳感器、半導體器件、復合材料制備、透明顯示觸摸屏等方面。
石墨烯是替代硅的理想材料
相對于通過前端設計提升微結構來提高芯片性能,通過后端設計來提升主頻顯然更加簡單粗暴,而且隨著Intel在IPC上已經遭遇緊瓶,相信全球其他IC設計公司在各自的微結構達到Haswell水平后,IPC很有可能也會相繼撞墻。因此,提升主頻已經是成為了提升CPU性能的不二之選。
硅基材料集成電路主頻越高,熱量也隨之提高,并最終撞上功耗墻。目前硅基芯片最高的頻率是在液氮環境下實現的8.4G,日常使用的桌面芯片主頻基本在3G到4G,筆記本電腦為了控制CPU功耗,主頻普遍控制在2G到3G之間。
但如果使用石墨烯材料,那么結果就可能不同了。因為相對于現在普遍使用的硅基材料,石墨烯的載流子遷移率在室溫下可達硅的10倍以上,在實驗室環境下最高可達100倍,飽和速度是硅的5倍,電子運動速度達到了光速的1/300。同時具有非常好的導熱性能,芯片的主頻理論上可以達到300G,并且有比硅基芯片更低的功耗——早在幾年前,IBM在實驗室中的石墨烯場效應晶體管主頻達155G。
(IBM的石墨烯圓晶/芯片)
因此,采用石墨烯材料的芯片具有極高的工作頻率和極小的尺寸,而且石墨烯芯片制造可與硅工藝兼容,是硅的理想替代材料——在前端設計水平相當的情況下,使用石墨烯制造的芯片要比使用硅基材料的芯片性能強幾十倍,隨著技術發展,進一步挖掘潛力,性能可能會是傳統硅基芯片的上百倍!同時還擁有更低的功耗。
石墨烯材料制備
石墨烯材料可分為兩類:一類是由單層或多層石墨烯構成的薄膜;另一類是由多層石墨烯(10層以下)構成的微片。
目前石墨烯制造方法多達幾十種——物理方法主要有機械剝離法、取向附生法和加熱SiC外延生長法;化學方法主要有電弧放電法、化學剝離法、氧化還原法和化學氣相沉積(CVD)法。各種制備方法獲得的石墨烯材料應用領域有所不同,比如采用電弧放電發制取的石墨烯更適合作為超級電容器的電極材料,而可用于制造集成電路的石墨烯材料的制備方法是加熱SiC外延生長法和CVD法。
加熱SiC法
加熱SiC法是在SiC晶圓的Si面或C面上,通過加熱使Si原子蒸發掉而在SiC上形成石墨烯層。該方法制作的石墨烯材料層數可控,面積較大,具有較高的載流子遷移率,能夠研制出高性能的射頻芯片。但目前受SiC晶圓尺寸的限制,這種技術最多只能生長出4英寸晶圓級石墨烯,尺寸雖無法與現代芯片所需的12英寸Si材料相比,但是晶圓質量與Si晶圓相當甚至更好。2015年,北京大學采用氫輔助法在4H-SiC表面外延生長出高質量石墨烯,其中氫充當了碳刻蝕劑的作用,產生的石墨烯層面積更大,厚度更均勻。
化學氣相沉積(CVD)法
CVD法是以銅和鎳等金屬材料作為襯底來生長具有原子級厚度的石墨烯材料。
這種方法獲得的石墨烯材料的面積大、導電性高、透光性好和成本低,而且CVD法制作石墨烯器件的工藝與硅工藝非常兼容,是納米半導體器件的主要發展方向。2013年,中國航空工業集團公司北京航空材料研究院宣布已在銅箔表面制備出12英寸以上的石墨烯薄膜,大尺寸、高質量的石墨烯薄膜制備技術也已突破。
石墨烯材料應用前景
因石墨烯具有的較高的載流子遷移率、極高的載流子速度、優異的等比縮小和有限的散射等特性,是電子器件和集成電路的首選材料。在射頻領域,已研制出性能極高的零帶隙大面積石墨烯MOSFET、雙層石墨烯FET等產品;在石墨烯數字邏輯方面,已出現了雙層石墨烯晶體管、納米帶晶體管和隧穿FET及相關電路。
在光纖通信方面,因石墨烯中的電子在遷移時,不會因為晶格缺陷或引入外來原子而發生散射,即使周圍碳原子發生擠撞,石墨烯內部受到的干擾也非常小。若將傳統的信號傳輸銅纜替換為石墨烯,不僅傳輸線纜的重量降低,強度增大,信道降噪抗干擾能力也會得到極大地提升。雖然光纖傳輸速度快,效率也高,但是數據傳輸過程中,光電轉換比較麻煩。如果用石墨烯替代光纖應用于有線傳輸,不僅能保障傳輸速度和質量,還能免除廣電轉換過程,進而省去了一大堆光電轉換設備及研究、制造經費。
在傳感器制造方面,因石墨烯僅吸收2.3%的光,并使所有光譜的光均勻地通過,具有非常好的透光性,可以用于傳感器的制作。據新加坡一個科研團隊展示的科研成果,石墨烯感光元件的性能比傳統傳感器強1000倍——在昏暗的光線環境中,這類傳感器依然能夠捕捉到較為清晰的物體影像。
(石墨烯傳感器)
在屏幕制造方面,因具有輕、薄、幾乎完全透光、強度大、柔韌性好等特點,石墨烯是最有潛力替代氧化銦錫的材料。采用石墨烯技術的屏幕和現在的手機屏幕相比,不僅更薄、透光性更好,而且還具有更好的韌性,更不容易破損,甚至還能做成能夠卷起的柔性屏幕。石墨烯屏幕能比現在用的屏幕擁有更好的用戶體驗。
(石墨烯屏幕)
在鋰電池上采用石墨烯材料電極,能有效提升電池的提升電池倍率充放電性能、循環壽命和能量密度,具體請參照《華為Mate8的石墨烯電池是怎么回事》。
石墨烯材料對5G通信的意義
相對于上述用途,在無線通信領域石墨烯芯片的大規模應用很有可能會先行一步。
目前主流的4G系統基站雖然已經采用了負責基帶處理的BBU+負責射頻的RRU通過光纖拉遠的架構,但由于機房站址資源日益稀缺和高成本,將BBU集中設置以節省機房的需求越來越強烈,同時也要求對基帶資源共享、集中調度等功能的實現。
由于基帶信號對帶寬和各項處理資源的消耗很大,現有芯片和背板處理速度根本無法實現更大規模的基帶資源集中調度和共享,同時在散熱、功耗等方面也面臨很大挑戰。
若采用石墨烯材料,不但芯片處理能力、數據交換速率能得到大幅提升,石墨烯良好的導熱、導電和耐溫特性也使得在散熱、功耗方面的要求降低,進而實現處理能力達到上萬載頻的集中式基帶資源池。未來無線通信技術無疑以滿足高速數據業務為主,而傳統的宏蜂窩技術已經無法滿足應用,必然走向宏微結合的異構網絡架構,引入大量smellcell網元以滿足室內以及熱點場景的覆蓋和容量需求。
但隨著這些網元的引入,改變了原有宏站的網絡拓撲結構,產生大量新的干擾場景,必須通過引入各種站間、宏微協同等技術予以消除。
比如采用協同多點傳送和接收技術,但會帶來各種協同算法加載后的大量復雜計算對資源的消耗,而基于石墨烯材料的基帶芯片大量應用,其強悍的運算能力將使這些原本需要海量運算能力的技術和算法具有可操作性。
5G通信的特性就是“萬物互聯”,具有熱點高容量、低功耗大連接、低時延高可靠等特點——在人口密集區為用戶提供1Gbps用戶體驗速率和10Gbps峰值速率;具備超千億網絡連接的支持能力,滿足100萬/km2連接數密度指標要求;在車聯網、工業控制等垂直行業的特殊應用需求,為用戶提供毫秒級的端到端時延和接近100%的業務可靠性保證。
因此,大規模天線陣列、超密集組網、新型多址技術和全頻譜接入等技術就成為5G無線技術的發展方向,而這些技術很有可能需要倚重石墨烯材料的廣泛應用。相信這也是任正非在數次講話中無比重視石墨烯技術,華為不遠千里和曼切斯特大學合作開發石墨烯技術的原因。
責任編輯: 李穎